Quan sát đồ thị của hàm số \(y = {x^2}\) (H.1.2)
a) Hàm số đồng biến trên khoảng nào?
b) Hàm số nghịch biến trên khoảng nào?
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Quan sát đồ thị của hàm số \(y = {x^2}\) (H.1.2)
a) Hàm số đồng biến trên khoảng nào?
b) Hàm số nghịch biến trên khoảng nào?
Hình 1.5 là đồ thị của hàm số \(y = {x^3} - 3{x^2} + 2\). Hãy tìm các khoảng đồng biến, khoảng nghịch biến của hàm số.
Tập xác định của hàm số là \(\mathbb{R}\).
Trong khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\) thì đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) đi lên từ trái sang phải nên hàm số \(y = {x^3} - 3{x^2} + 2\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\).
Trong khoảng \(\left( {0;2} \right)\) thì đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) đi xuống từ trái sang phải nên hàm số \(y = {x^3} - 3{x^2} + 2\) nghịch biến trên khoảng \(\left( {0;2} \right)\).
Trả lời bởi Hà Quang Minha) Xét dấu đạo hàm của hàm số trên các khoảng \(\left( { - \infty ; - 1} \right)\), \(\left( {1; + \infty } \right)\). Nêu nhận xét về mối quan hệ giữa tính đồng biến, nghịch biến và dấu của đạo hàm trên mỗi khoảng này.
b) Có nhận xét gì về đạo hàm y’ của hàm số y trên khoảng \(\left( { - 1;1} \right)\)?
a) + Xét khoảng \(\left( { - \infty ; - 1} \right)\) ta có: \(y' = \left( { - x} \right)' = - 1 < 0\)
Trong khoảng \(\left( { - \infty ; - 1} \right)\) ta thấy hàm số y nghịch biến và đạo hàm \(y' < 0\).
+ Xét khoảng \(\left( {1; + \infty } \right)\) ta có: \(y' = x' = 1 > 0\)
Trong khoảng \(\left( {1; + \infty } \right)\) ta thấy hàm số y đồng biến và đạo hàm \(y' > 0\).
b) Trong khoảng \(\left( { - 1;1} \right)\) ta có: \(y' = \left( 1 \right)' = 0\)
Trong khoảng \(\left( { - 1;1} \right)\) ta thấy hàm số y không đổi và đạo hàm \(y' = 0\).
Trả lời bởi Hà Quang MinhTìm các khoảng đồng biến, khoảng nghịch biến của hàm số \(y = - {x^2} + 2x + 3\).
Tập xác định của hàm số là \(\mathbb{R}\).
Ta có: \(y' = - 2x + 2,y' > 0\) với \(x \in \left( { - \infty ;1} \right)\); \(y < 0\) với \(x \in \left( {1; + \infty } \right)\).
Do đó, hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).
Trả lời bởi Hà Quang MinhCho hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} + 2x + 1\).
a) Tính đạo hàm \(f'\left( x \right)\) và tìm các điểm x mà \(f'\left( x \right) = 0\).
b) Lập bảng biến thiên của hàm số, tức là lập bảng thể hiện dấu của đạo hàm và sự đồng biến, nghịch biến của hàm số trên các khoảng tương ứng.
c) Nếu kết luận về khoảng đồng biến, nghịch biến của hàm số.
a) \(f'\left( x \right) = \left( {{x^3} - 3{x^2} + 2x + 1} \right)' = 3{x^2} - 6x + 2\)
\(f'\left( x \right) = 0 \Leftrightarrow 3{x^2} - 6x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3 - \sqrt 3 }}{3}\\x = \frac{{3 + \sqrt 3 }}{3}\end{array} \right.\)
Vậy \(x = \frac{{3 - \sqrt 3 }}{3},x = \frac{{3 + \sqrt 3 }}{3}\) thì \(f'\left( x \right) = 0\)
b) Bảng biến thiên:
c) Hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} + 2x + 1\) đồng biến trên khoảng \(\left( { - \infty ;\frac{{3 - \sqrt 3 }}{3}} \right)\) và \(\left( {\frac{{3 + \sqrt 3 }}{3}; + \infty } \right)\).
Hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} + 2x + 1\) nghịch biến trên khoảng \(\left( {\frac{{3 - \sqrt 3 }}{3};\frac{{3 + \sqrt 3 }}{3}} \right)\).
Trả lời bởi Hà Quang MinhTìm các khoảng đơn điệu của các hàm số sau:
a) \(y = \frac{1}{3}{x^3} + 3{x^2} + 5x + 2\);
b) \(y = \frac{{ - {x^2} + 5x - 7}}{{x - 2}}\).
a) Tập xác định: \(D = \mathbb{R}\).
Ta có: \(y' = {x^2} + 6x + 5,y' = 0 \Leftrightarrow {x^2} + 6x + 5 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 5\end{array} \right.\)
Lập bảng biến thiên của hàm số:
Hàm số \(y = \frac{1}{3}{x^3} + 3{x^2} + 5x + 2\) đồng biến trên khoảng \(\left( { - \infty ; - 5} \right)\) và \(\left( { - 1; + \infty } \right)\).
Hàm số \(y = \frac{1}{3}{x^3} + 3{x^2} + 5x + 2\) nghịch biến trên khoảng \(\left( { - 5; - 1} \right)\).
b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).
Ta có: \(y' = \frac{{\left( { - 2x + 5} \right)\left( {x - 2} \right) - \left( { - {x^2} + 5x - 7} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - {x^2} + 4x - 3}}{{{{\left( {x - 2} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\) (thỏa mãn)
Lập bảng biến thiên của hàm số:
Hàm số \(y = \frac{{ - {x^2} + 5x - 7}}{{x - 2}}\) đồng biến trên khoảng \(\left( {1;2} \right)\) và \(\left( {2;3} \right)\).
Hàm số \(y = \frac{{ - {x^2} + 5x - 7}}{{x - 2}}\) nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\).
Trả lời bởi Hà Quang MinhGiải bài toán trong tình huống mở đầu bằng cách thực hiện lần lượt các yêu cầu sau:
a) Theo ý nghĩa cơ học của đạo hàm, vận tốc v(t) là đạo hàm của s(t). Hãy tìm vận tốc v(t).
b) Xét dấu của hàm v(t), từ đó suy ra câu trả lời.
Bài toán mở đầu:
Xét một chất điểm chuyển động trên một trục số nằm ngang, chiều dương từ trái sang phải (H.1.1). Giả sử vị trí s(t) (mét) của chất điểm trên trục số đã chọn tại thời điểm t (giây) được cho bởi công thức \(s\left( t \right) = {t^3} - 9{t^2} + 15t,t \ge 0\). Hỏi trong khoảng thời gian nào thì chất điểm chuyển động sang phải, trong khoảng thời gian nào thì chất điểm chuyển động sang trái?
a) Ta có: \(v\left( t \right) = s'\left( t \right) = \left( {{t^3} - 9{t^2} + 15t} \right)' = 3{t^2} - 18t + 15\)
b) Tập xác định: \(D = \mathbb{R}\).
Ta có: \(v\left( t \right) > 0 \Leftrightarrow 3{t^2} - 18t + 15 > 0 \Leftrightarrow \left( {t - 1} \right)\left( {t - 5} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}t < 1\\t > 5\end{array} \right.\)
\(v\left( t \right) < 0 \Leftrightarrow 3{t^2} - 18t + 15 < 0 \Leftrightarrow \left( {t - 1} \right)\left( {t - 5} \right) < 0 \Leftrightarrow 1 < t < 5\)
Chất điểm chuyển động theo chiều dương (sang bên phải) khi \(v\left( t \right) > 0\), tức là \(t \in \left( { - \infty ;1} \right) \cup \left( {5; + \infty } \right)\).
Chất điểm chuyển động theo chiều âm (sang bên trái) khi \(v\left( t \right) < 0\), tức là \(1 < t < 5\).
Trả lời bởi Hà Quang MinhQuan sát đồ thị của hàm số \(y = {x^3} + 3{x^2} - 4\) (H.1.7). Xét dấu đạo hàm của hàm số đã cho và hoàn thành các bảng sau vào vở:
Hình 1.9 là đồ thị của hàm số \(y = f\left( x \right)\). Hãy tìm các cực trị của hàm số.
Từ đồ thị hàm số, ta có:
Hàm số đạt cực tiểu tại \(x = 1\) và \({y_{CT}} = y\left( 1 \right) = 1\).
Hàm số đạt cực đại tại \(x = - 1\) và \({y_{C{\rm{D}}}} = y( - 1) = 5\)
Trả lời bởi Hà Quang MinhCho hàm số \(y = \frac{1}{3}{x^3} - 3{x^2} + 8x + 1\).
a) Tính đạo hàm \(f'\left( x \right)\) và tìm các điểm mà tại đó đạo hàm \(f'\left( x \right)\) bằng 0.
b) Lập bảng biến thiên của hàm số.
c) Từ bảng biến thiên suy ra các điểm cực trị của hàm số.
a) Tập xác định: \(D = \mathbb{R}\).
\(y' = {x^2} - 6x + 8\), \(y' = 0 \Leftrightarrow {x^2} - 6x + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = 2\end{array} \right.\)
Vậy \(x = 4;x = 2\) thì \(f'\left( x \right) = 0\)
b) Bảng biến thiên:
c) Từ bảng biến thiên ta có:
Hàm số \(y = \frac{1}{3}{x^3} - 3{x^2} + 8x + 1\) có điểm cực đại là \(\left( {2;\frac{{23}}{3}} \right)\).
Hàm số \(y = \frac{1}{3}{x^3} - 3{x^2} + 8x + 1\) có điểm cực tiểu là \(\left( {4;\frac{{19}}{3}} \right)\).
Trả lời bởi Hà Quang Minh
Từ đồ thị ta thấy:
+ Xét khoảng \(\left( {0; + \infty } \right)\): \(\forall {x_1},{x_2} \in \left( {0; + \infty } \right),{x_1} < {x_2}\) thì \(x_1^2 < x_2^2\) hay \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
Suy ra, hàm số \(y = {x^2}\) đồng biến trên \(\left( {0; + \infty } \right)\).
+ Xét khoảng \(\left( { - \infty ;0} \right)\): \(\forall {x_1},{x_2} \in \left( { - \infty ;0} \right),{x_1} < {x_2}\) thì \(x_1^2 > x_2^2\)hay \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\).
Suy ra, hàm số \(y = {x^2}\) nghịch biến trên \(\left( { - \infty ;0} \right)\).
Trả lời bởi Hà Quang Minh