cho các số a,b,x,y thoả mãn a+b=x+y và a^4+b^4=x^2+y^2.Cm a^2018+b^2018=x^2018+y^2018
Giúp mk nha mn
cho x^4/a+y^4/b=(x^2+y^2)/(a+b), và x^2+y^2=1 cmr x^2018/a^1009 y^2018/b^1009=2/(a b)^1009
cho x,y thỏa mãn 2x2 +10y2- 6xy - 2y + 10 =0. tính giá trị của A = \(\dfrac{\left(x+y-4\right)^{2018}-y^{2018}}{4}\)
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
Cho các số x,y thỏa mãn điều kiện:
\(2x^2+10y^2-6xy-2y+10=0\)
Hãy trị của biểu thức: A=\(\dfrac{\left(x+y-4\right)^{2018}-y^{2018}}{x}\)
CMR: nếu 1/x+1/y+1/z = 1/x+y+z thì 1/x^2018 + 1/y^2018 +1/z^2018 = 1/x^2018+1/y^2018+1/z^2018
Cho x4/a+y4/b=1/a+b, x2+y2=1
Chứng minh: x2018/a1009+y2018/b1009=2/(a+b)1009
Giải phương trình |x – 3y|2017 + |y + 4|2018 = 0 ta được nghiệm (x; y). Khi đó y – x bằng
A. -16
B. -8
C. 16
D. 8
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=1\)và \(x^2+y^2=1\).CMR: \(\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{2}{\left(a+b\right)^{1009}}\).