CT

\(x,y>0\)thỏa mãn \(x\ge2y\).Tìm \(min\)\(A=\frac{2x^2+y^2-2xy}{xy}\)

NH
30 tháng 8 2017 lúc 20:10

Ta có:

\(A=\frac{2x^2+y^2-2xy}{xy}=\frac{\left(x^2-4xy+4y^2\right)+x^2+2xy-3y^2}{xy}=\frac{\left(x-2y\right)^2+x^2+2xy-3y^2}{xy}\)

\(=\frac{\left(x-2y\right)^2}{xy}+\frac{x}{y}+2+\frac{-3y}{x}\ge0+2+2+\frac{-3}{2}=\frac{5}{2}\)

Vậy minA = \(\frac{5}{2}\)khi x = 2y.

Bình luận (0)

Các câu hỏi tương tự
N1
Xem chi tiết
NH
Xem chi tiết
KL
Xem chi tiết
PH
Xem chi tiết
SB
Xem chi tiết
LD
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
NA
Xem chi tiết