Lời giải:
$x+y-z=3$
$\Rightarrow 3-z=3$
$\Rightarrow z=0$
$x+y=3$
$y-x=1$
$\Rightarrow y=(3+1):2=2; x=y-1=2-1=1$
Vậy $x=1;y=2; z=0$
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Lời giải:
$x+y-z=3$
$\Rightarrow 3-z=3$
$\Rightarrow z=0$
$x+y=3$
$y-x=1$
$\Rightarrow y=(3+1):2=2; x=y-1=2-1=1$
Vậy $x=1;y=2; z=0$
tìm x,y,z biết a,3/x-1=4/y-2=5/z-3 và x+y+z=18 b,3/x-1=4/y-2=5/z-3 và x.y.z=192
Ta co: xy + x + y =3 ; yz + y + z =8 ; xz +x + z =15
Tim x + y + z = ?
x+y-z+3=1 biết x+y=4,y-x=2, Tìm x,y,z
Tìm các số x, y, x biết rằng :
a) 3x = 2y, 7y = 5z, x - y + z = 32
b) x/3 = y/4, y/2 = x/5, 2x -3y + z = 6
c) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
d) x - 1/2 = y - 2/3 = z - 3/4 và 2x + 3y - z =50
e) x/2 = y/3 = z/5 và xyz = 810
Tìm y khi biết:
y-2=x
x+2=y
x*3=z
z:3=y
tìm x, y, z sao cho x ^3 - (x+y + z)^ 3 = ( y+ z ) ^ 3 + 34
Cho các số thực x,t,z thỏa mãn \(0< x,y,z\le1\)
CMR: \(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
tìm x,y thuộc Z biết
a) (x-1).(3-y) = 2
b) xy+x-y=4
c) xy +12 =x+y