x.x+2 chia hết cho x+1
=>2x+2 chia hết cho x+1
=>2(x+1) chia hết cho x+1
=>x+1 chia hết cho x+1
=>x=0
Vậy x=0
Để x + 2 ⋮ x + 1 <=> \(\frac{x+2}{x+1}\) là số nguyên
\(\frac{x+2}{x+1}=\frac{\left(x+1\right)+1}{x+1}=\frac{x+1}{x+1}+\frac{1}{x+1}=1+\frac{1}{x+1}\)
Để \(1+\frac{1}{x+1}\) là số nguyên <=> \(\frac{1}{x+1}\) là số nguyên
=> x + 1 ∈ Ư ( 1 ) = { - 1 ; 1 }
Ta có : x + 1 = - 1 <=> x = - 1 - 1 => x = - 2 ( TM )
x + 1 = 1 <=> x = 1 - 1 => x = 0 ( TM )
Vậy x ∈ { - 2 ; 0 }