\(\Leftrightarrow x\sqrt{2x-1}-4x+2=0\)0
\(\Leftrightarrow x\sqrt{2x-1}-2\left(2x-1\right)=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(x-2\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-1}=0\\x-2\sqrt{2x-1}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\sqrt{2x-1}\left(1\right)\end{cases}}\)
+) giải phương trình (1) ta có
\(x=2\sqrt{2x-1}\)
\(\Leftrightarrow x^2=4.\left(2x-1\right)=0\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4-2\sqrt{3}\\x=4+2\sqrt{3}\end{cases}}\)
Vậy phương trình đã cho có 3 nghiệm là \(x=\frac{1}{2};x=4+2\sqrt{3};x=4-2\sqrt{3}\)
Đặt \(\sqrt{2x-1}=t\Rightarrow t^2=2x-1\Rightarrow x=\frac{t^2+1}{2}\)
Vậy pt đã cho \(\Leftrightarrow\frac{t^2+1}{2}\cdot t=2t^2\\ \Leftrightarrow t^3+t-4t^2=0\Rightarrow t\left(t^2-4t+1\right)=0\)
\(t=0\Rightarrow x=\frac{1}{2}\left(tm\right)\)
\(t^2-4t+1=0\Rightarrow\orbr{\begin{cases}t=2-\sqrt{3}\\t=2+\sqrt{3}\end{cases}}\)
\(t=2-\sqrt{3}\Rightarrow2x-1=7-4\sqrt{3}\Rightarrow2x=8-4\sqrt{3}\\ \Rightarrow x=4-2\sqrt{3}\)
\(t=2+\sqrt{3}\Rightarrow2x-1=7+4\sqrt{3}\Rightarrow2x=8+4\sqrt{3}\\ \Rightarrow x=4+2\sqrt{3}\)