\(y'=2\left(cos2x+sinx-1\right)=2\left(-2sin^2x+sinx\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Hàm đồng biến trên các khoảng: \(\left(k2\pi;\dfrac{\pi}{6}+k2\pi\right)\) ; \(\left(\dfrac{5\pi}{6}+k2\pi;\pi+k2\pi\right)\)
Hàm nghịch biến trên các khoảng: \(\left(\dfrac{\pi}{6}+k2\pi;\dfrac{5\pi}{6}+k2\pi\right)\) ; \(\left(-\pi+k2\pi;k2\pi\right)\)
Đúng 0
Bình luận (0)