PB

Xét các số thực x, y thỏa mãn x2 + y2 > 1 và log x 2 + y 2 2 x + 3 y ≥ 1 . Giá trị lớn nhất Pmax cửa biểu thức P = 2x+y bằng:

A.  P m a x = 7 - 10 2

B.  P m a x = 19 + 19 2

C.  P m a x = 7 + 65 2

D.  P m a x = 11 + 10 2 3

CT
19 tháng 9 2018 lúc 15:32

Đáp án C.

Phương pháp giải: Dựa vào giả thiết, đánh giá đưa về tổng các bình phương, từ biểu thức P đưa về hạng tử trong tổng bình phương và áp dụng bất đẳng thức Bunhiacopxki tìm giá trị lớn nhất.

Lời giải:

Vì x2 + y2 > 1 suy ra  log x 2 + y 2 f ( x )  là hàm số đồng biến trên tập xác định

Khi đó 

Xét biểu thức P, ta có 

Áp dụng BĐT Bunhiacopxki, có 

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết