PB

Xét các số thực dương x,y thỏa mãn log 3 x + y x 2 + y 2 + x y + 2 = x x − 3 + y y − 3 + x y .  Tìm giá trị lớn nhất P m a x  của  P = 3 x + 2 y + 1 x + y + 6 .

A. 3

B. 2

C. 1

D. 4

CT
24 tháng 12 2018 lúc 2:05

Đáp án C.

Ta có x x − 3 + y y − 3 + x y

= x 2 + y 2 + x y − 3 x − 3 y = x 2 + y 2 + x y + 2 − 3 x + y − 2

Khi đó, giả thiết trở thành:

log 3 x + y x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 − 3 x + y − 2  

⇔ log 3 x + y − log 3 x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 − 3 x + y − 2  

⇔ 3 x + y + log 3 3 x + y = x 2 + y 2 + x y + 2 + log 3 x 2 + y 2 + x y + 2  

Xét hàm số f t = t + log 3 t  trên khoảng  0 ; + ∞ ,

có f ' t = 1 + 1 t ln 3 > ;   ∀ t > 0.

Suy ra f( t) là hàm số đồng biến trên  0 ; + ∞

mà f 3 x + y = f x 2 + y 2 + x y + 2  

⇔ 2 x + y 2 − 6 2 x + y + 5 = − 3 y − 1 2 ≤ 0 ⇔ 1 ≤ 2 x + y ≤ 5.  

Khi đó P = 1 + 2 x + y − 5 x + y + 6 ≤ 1  

vì 2 x + y − 5 ≤ 0 x + y + 6 > 0 .  Vậy  P m a x = 1.

Bình luận (0)