Thay x = 3 vào đa thức g(x), ta được: \(g\left(x\right)=3^2+3m-3=0\)
\(\Leftrightarrow9+3m-3=0\)
\(\Leftrightarrow6+3m=0\)
\(\Leftrightarrow3m=-6\)
\(\Leftrightarrow m=-2\)
Vậy hệ số m là -2
Để đa thức \(g\left(x\right)=x^2+mx-3\) nhận \(x=3\)làm một nghiệm thì \(g\left(3\right)=0\)
\(\Leftrightarrow3^2+m.3-3=0\Leftrightarrow3m=-6\Leftrightarrow m=-2\)
Vậy : Với \(m=-2\)thì đa thức \(g\left(x\right)=x^2+mx-3\)nhận \(x=3\)làm một nghiệm.
Tham khảo nha!!! Học tốt
Ta có \(\text{ g (x) = x^2 + mx - 3 }\)
Cho g(3)=0
\(=>g\left(3\right)=3^2+m.3-3=0\)
\(=>9+3m-3=0=>6+3m=0=>3m=-6>m=-2\)