a/ \(\left(ax+1\right)\left(ax+b\right)=a^2x^2+x\left(ab+a\right)+b=x^2+7\)
\(\Rightarrow\hept{\begin{cases}a^2=1\\ab+a=0\\b=7\end{cases}}\)
Không tồn tại a, b thỏa mãn
b/ \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+x^2\left(ac+b\right)+x\left(a+bc\right)+b=x^3-3x+2\)
\(\Rightarrow\)a = 1 và ac + b = 0 và a + bc = -3 và b = 2
\(\Rightarrow\left(a;b;c\right)=\left(1;2;-2\right)\)