PB

Xác định giá trị của tham số m để hàm số

y = x 3  - 3(m - 1) x 2  - 3(m + 1)x - 5 có cực trị

A. m > 0              B. -1 < m < 1

C. m ≤ 0              D. ∀m ∈ R.

CT
16 tháng 8 2018 lúc 10:25

Đáp án: D.

y' = 3 x 2  - 6(m - 1)x - 3(m + 1)

y' = 0 ⇔  x 2  - 2(m - 1)x - m - 1 = 0

Δ' = ( m - 1 ) 2  + m + 1 = m 2  - m + 2 ≥ 0

Tam thức m 2  - m + 2 luôn dương với mọi m ∈ R vì δ = 1 - 8 < 0 và a = 1 > 0 cho nên phương y' = 0 luôn có hai nghiệm phân biệt. Suy ra hàm số luôn có cực trị với mọi giá trị m ∈ R.

Bình luận (0)