Tại \(x=4\)thì:
\(x^5-5x^4+5x^3-5x^2+5x-1\)
= \(x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-1\)
= \(x^5-x^4-x^4+x^4+x^3-x^3-x^2+x^2+x-1\)
= \(3\)
mình chỉnh lại đề nhé:
Do: \(x=4\)\(\Rightarrow\)\(x+1=5\)
\(x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-1\)
\(=x-1\)
\(=4-1=3\)