Đường kính của một bánh xe là 0,6 m. Người đi xe đạp sẽ đi được bao nhiêu km, nếu bánh xe lăn trên mặt đất 1000 vòng?
xin loi minh bam nham ket qua dung la 1884 km
minh quen chua doi sang km xin loi the ko nham nua ket qua la 0,6km
Đường kính của một bánh xe là 0,6 m. Người đi xe đạp sẽ đi được bao nhiêu km, nếu bánh xe lăn trên mặt đất 1000 vòng?
xin loi minh bam nham ket qua dung la 1884 km
minh quen chua doi sang km xin loi the ko nham nua ket qua la 0,6km
Cho 3 số x, y, z khác 0 thỏa mãn điều kiện:
x+y+z = 2013 và 1/x + 1/y + 1/z = 1/2013.
Tính giá trị của biểu thức A = (x^3+y^3)(y^5+z^5)(z^7+x^7)
Cho 3 số x, y ,z khác 0 thỏa:
x+y+z= 1/2
1/x2 +1/y2 + 1/z2 + 1/xyz = 4
1/x + 1/y + 1/z > 0
Tính giá trị của P = (y2009 + z2009)(z2011 + x2011)(x2013 + y2013)
tính tổng sau đây với x,y,z ddoooi một khác nhau và khác 0
F=\(\frac{2013+x}{x\left(x-y\right)\left(x-z\right)}+\frac{2013+y}{y\left(y-z\right)\left(y-x\right)}+\frac{2013+z}{z\left(z-x\right)\left(z-y\right)}\)
Tính tổng sau với x,y,z đôi một khác nhau và khác 0
\(F=\frac{2013+x}{x\left(x-y\right)\left(x-z\right)}+\frac{2013+y}{y\left(y-z\right)\left(y-x\right)}+\frac{2013+z}{z\left(z-x\right)\left(z-y\right)}\)
cho x,y,z khác 0,x+y+z khác 0 thoả mãn 1/x+1/y+1/z=1/x+y+z. tính giá trị biểu thức A=(x+y)(y^3+z^3)(z^5+x^5)
1.Cho x+y+z=0. CMR:
a) \(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
b) \(x^7+y^7+z^7=7xyz\left(x^2y^2+y^2z^2+z^2x^2\right)\)
c) \(10\left(x^7+y^7+z^7\right)=7\left(x^2+y^2+z^2\right)\left(x^5+y^5+z^5\right)\)
d) \(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
2. Tìm n∈ N để biểu thức sau là số nguyên tố
a) \(A=n^3-4n^2-4n-1\)
b) \(B=n^3-6n^2+9n-2\)
c) \(C=n^{1975}+n^{1973}+1\)
cho 3 số x ,y ,z #0 thõa mãn 1/x + 1/y +1/z=0 . tính : P =(xy/z^2 + yz/x^2 +zx/y^2 -2)^2013
cho x + y + z = 2017
x , y , z khác 0
1 / x + 1 /y + 1/z = 1 / 2017
tính S = ( x^5 - 2017^5 ) * ( y^7 - 2017^7 ) * ( z^9 - 2017^9 )
tinh tong sau voi x,y,z doi mot khac nhau va khac 0 : F=2013+x/x(x-y)(x-z) + 2013+y/y(y-z)(y-x) + 2013+z/z(z-x)(z-y)