H24

\(x^2+\dfrac{1}{x^2}+\left(1-3m\right)\left(x+\dfrac{1}{x}\right)+3m=0\) tìm m để phương trình trên có nghiệm

MY
26 tháng 12 2021 lúc 0:17

\(\left(x\ne0\right)đặt:x+\dfrac{1}{x}=t\Leftrightarrow x^2-xt+1=0\Rightarrow\Delta=t^2-4\ge0\Rightarrow t\in(-\text{∞};-2]\cup[2;+\text{∞})\) \(pt:x^2+\dfrac{1}{x^2}+\left(1-3m\right)\left(x+\dfrac{1}{x}\right)+3m=0\left(1\right)\)

\(\left(1\right)\Leftrightarrow t^2+\left(1-3m\right)t+3m-2=0\left(2\right)\) 

\(\left(1\right)\) \(có\) \(nghiệm\Leftrightarrow\left(2\right)\) \(có\) \(nghiệm\) \(thuộc:(-\text{∞};-2]\cup[2;+\text{∞})\)

\(\left(2\right)\Leftrightarrow\left(t-1\right)\left(t-3m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin(-\text{∞};-2]\cup[2;+\text{∞})\\t=3m-2\end{matrix}\right.\)

\(\Rightarrow t=3m-2\in(-\text{∞};-2]\cup[2;+\text{∞})\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3m-2< -2\\t=3m-2>2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow m\in(-\text{∞};0)\cup\left(\dfrac{4}{3};+\text{∞}\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
AN
Xem chi tiết
NN
Xem chi tiết