ta có
\(100x+\left(1+2+3+4+...+100\right)=6050\)
\(100x+5050=6050\)
\(100x=6050-5050\)
\(100x=1000\)
\(x=1000:100\)
\(x=10\)
(x + 1) + (x + 2) + (x + 3) + ... + (x + 100) = 6050 (100 cặp)
=> (x + x + x + x + ... + x) + (1 + 2 + 3 + ... + 100) = 6050
100 số hạng x 100 số hạng
=> 100x + 100.(100 + 1) : 2 = 6050
=> 100x + 5050 = 6050
=> 100x = 6050 - 5050
=> 100x = 1000
=> x = 1000 : 100
=> x = 10
\((x+1)+(x+2)+(x+3)+...+(x+100)=6050\)
=> x + 1 + x + 2 + x + 3 + x + 4 + ... + x + 100 = 6050
=> [x + x + ... + x] + [1 + 2 + 3 +... + 100] = 6050
=> 100x + 5050 = 6050
=> 100x = 1000
=> x = 1000 : 100 = 10
(x+1)+(x+2)+(x+3)+(x4)+....+(x+99)+(x+100)=6050
=>(x+x+x+x+.....+x+x)+(1+2+3+4+....+99+100)=6050
=>100.x+{(1+100).[(100-1):1+1]:2}=6050
=>100.x+{101.[99:1+1]:2}=6050
=>100.x+{[101.100]:2} =6050
=>100.x+{10100:2} =6050
=>100.x+5050 =6050
=>100.x =6050-5050
=>100.x =1000
=> x =1000:100
=> x = 10
Vậy x=10
(x+x+x+...+x+x)+(1+2+3+...+99+100)=6050
100x + (100+1).100:2 =6050
100x + 5050 =6050
100x =6050-5050
100x =1000
x =1000:100
x =10