LC

(x+1)+(x+2)+...+(x+30)=750

mong các ac trả lời giúp e ạ 

e cảm ơn ac  rất nhiều ạ : 33

NN
20 tháng 2 2023 lúc 17:39

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+30\right)=750\)

\(\Rightarrow x+1+x+2+x+3+...+x+30=750\)

Áp dụng tính chất giao hoán các tổng, ta được:

\(\left(1+2+3+...+30\right)+\left(x+x+x+...+x\right)=750\)

Để tính được số phần tử \(x\) xuất hiện, ta sử dụng công thức.

\(P=\dfrac{\left(\text{số đầu - số cuối}\right)}{\text{khoảng cách}}+1=\dfrac{30-1}{1}+1=30\)

Vậy:

\(\left(1+2+3+...+30\right)+30x=750\)

Để tính tổng của dãy số có quy luật, ta sử dụng công thức:

\(T=\left(\dfrac{\text{số đầu - số cuối}}{\text{khoảng cách}}+1\right):2\cdot\left(\text{số đầu + số cuối}\right)\)

\(T=\left(\dfrac{30-1}{1}+1\right):2\cdot\left(30+1\right)\)

\(T=15\cdot31=465\)

Vậy ta được biểu thức rút gọn như sau:

\(465+30x=720\)

\(30x=720-465=255\)

\(x=255:30=8,5\)

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết