\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+30\right)=750\)
\(\Rightarrow x+1+x+2+x+3+...+x+30=750\)
Áp dụng tính chất giao hoán các tổng, ta được:
\(\left(1+2+3+...+30\right)+\left(x+x+x+...+x\right)=750\)
Để tính được số phần tử \(x\) xuất hiện, ta sử dụng công thức.
\(P=\dfrac{\left(\text{số đầu - số cuối}\right)}{\text{khoảng cách}}+1=\dfrac{30-1}{1}+1=30\)
Vậy:
\(\left(1+2+3+...+30\right)+30x=750\)
Để tính tổng của dãy số có quy luật, ta sử dụng công thức:
\(T=\left(\dfrac{\text{số đầu - số cuối}}{\text{khoảng cách}}+1\right):2\cdot\left(\text{số đầu + số cuối}\right)\)
\(T=\left(\dfrac{30-1}{1}+1\right):2\cdot\left(30+1\right)\)
\(T=15\cdot31=465\)
Vậy ta được biểu thức rút gọn như sau:
\(465+30x=720\)
\(30x=720-465=255\)
\(x=255:30=8,5\)