(x + 1) + (x + 2) +......+ (x + 100) = 5750
(x + x + ... + x) + (1 + 2 + 3 + ... + 100) = 5750
x . 100 + (1 + 2 + 3 + ... + 100) = 5750
x . 100 + ([1 + 100] . 100 : 2) = 5750
x . 100 + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
=> x = 700 : 100 = 7
100x=5750-(1+2+3+...+100) => x=0,7
\(\left(X+1\right)+\left(X+2\right)+\left(X+3\right)+...+\left(X+100\right)\)
\(=\left(X+X+...+x\right)+\left(1+2+3+4+...+100\right)\)
\(Xx100+\left(1+100x100:2\right)\)
\(Xx100+5050=5750\)
\(Xx100=5750-5050\)
\(Xx100=700\)
\(X=700:100\)
\(X=7\)
\(Ai\)\(k\)\(minh,minh\)\(k\)\(lai!\)
(x + 1) + (x + 2) + ... + (x + 100) = 5750
(x + x + ... + x) + (1 + 2 + ... + 100) = 5750
100x + [(1+100) × 100 : 2] = 5750
100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7.