x= -2018/2017
Bài làm:
Ta có: \(\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+...+\frac{x}{2017.2018}=-1\)
\(\Leftrightarrow x\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)=-1\)
\(\Leftrightarrow x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)=-1\)
\(\Leftrightarrow x\left(1-\frac{1}{2018}\right)=-1\)
\(\Leftrightarrow x.\frac{2017}{2018}=-1\)
\(\Rightarrow x=-\frac{2018}{2017}\)
\(\frac{x}{1\cdot2}+\frac{x}{2\cdot3}+\frac{x}{3\cdot4}+...+\frac{x}{2017\cdot2018}=-1\)
=> \(\frac{x}{1}-\frac{x}{2}+\frac{x}{2}-\frac{x}{3}+...+\frac{x}{2017}-\frac{x}{2018}=-1\)
=> \(\frac{x}{1}-\frac{x}{2018}=-1\)
=> \(\frac{2018x-x}{2018}=-1\)
=> \(\frac{2017x}{2018}=-1\)
=> 2017x = -2018
=> x = -2018/2017
Ta có \(\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+...+\frac{x}{2017.2018}=-1\)
=> \(x\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)=1\)
=> \(x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)=-1\)
=> \(x\left(1-\frac{1}{2018}\right)=-1\)
=> \(x.\frac{2017}{2018}=-1\)
=> \(x=-\frac{2018}{2017}\)
Vậy \(x=-\frac{2018}{2017}\)
\(\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+...+\frac{x}{2017.2018}=-1\)
\(\Leftrightarrow x\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)=-1\)
\(\Leftrightarrow x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)=-1\)
\(\Leftrightarrow x\left(1-\frac{1}{2018}\right)=-1\Leftrightarrow\frac{2017x}{2018}=-1\Leftrightarrow x=-\frac{2018}{2017}\)
\(\frac{x}{1\cdot2}+\frac{x}{2\cdot3}+\frac{x}{3\cdot4}+...+\frac{x}{2017\cdot2018}=-1\)
\(\Rightarrow x\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2017.2018}\right)=1\)
\(\Rightarrow x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2017}-\frac{1}{2018}\right)=-1\)
\(\Rightarrow x\left(1-\frac{1}{2018}\right)=-1\)
\(\Rightarrow x.\frac{2017}{2018}=-1\)
\(\Rightarrow x=-\frac{2018}{2017}\)
Vậy ...........