\(\dfrac{x+1}{65}+\dfrac{x+3}{63}+\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
\(\Leftrightarrow\dfrac{x+1}{65}+\dfrac{x+3}{63}-\dfrac{x+5}{61}-\dfrac{x+7}{59}=0\)
\(\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+3}{63}+1\right)-\left(\dfrac{x+5}{61}+1\right)-\left(\dfrac{x+7}{59}+1\right)\)
\(\Leftrightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}+\dfrac{x+66}{61}+\dfrac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right).\left[\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\right]\)\(=0\)
Do \(\dfrac{1}{65}< \dfrac{1}{63}< \dfrac{1}{61}< \dfrac{1}{59}\)
\(\Rightarrow\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)< 0\)
Vậy để \(\left(x+66\right).\left[\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\right]=0\)
\(\Leftrightarrow x+66=0\)
\(\Leftrightarrow x=-66\)
Vậy \(x\in\left\{-66\right\}\)