TH1:\(\hept{\begin{cases}x+\frac{1}{2}>0\\x-\frac{1}{3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-\frac{1}{2}\\x>\frac{1}{3}\end{cases}\Leftrightarrow}x>\frac{1}{3}}\)
TH2:\(\hept{\begin{cases}x+\frac{1}{2}< 0\\x-\frac{1}{3}< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{2}\\x< \frac{1}{3}\end{cases}\Leftrightarrow}x< -\frac{1}{2}}\)
vậy để biểu thức \(\left(x+\frac{1}{2}\right)\left(x-\frac{1}{3}\right)>0\)thì x > 1/3 hoặc x < (-1/2)