HL

x (x - 1) + x ( x + 3)=0

\(\dfrac{x}{2x-6}\)\(\dfrac{x}{2x+2}\)=\(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

H24
19 tháng 4 2023 lúc 21:21

`x (x - 1) + x ( x + 3)=0`

`<=> x^2 - x + x^2 +3x=0`

`<=> 2x^2 +2x=0`

`<=> 2x(x+1)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;-1\right\}\)

__

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x-3\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-1\end{matrix}\right.\)

Ta có : \(\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x.2}{2\left(x+1\right)\left(x-3\right)}\)

`=> x(x+1) -x(x-3)=4x`

`<=> x^2 + x -(x^2 -3x)=4x`

`<=> x^2 +x-x^2+3x-4x=0`

`<=>0=0`

 

Bình luận (0)
H24
19 tháng 4 2023 lúc 20:13

\(x\left(x-1\right)+x\left(x+3\right)=0\)

\(\Leftrightarrow x^2-x+x^2+3x=0\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1;x\ne3\right)\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+x}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x^2-3x}{2\left(x+1\right)\left(x-3\right)}-\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Rightarrow x^2+x-x^2+3x-4x=0\)

\(\Leftrightarrow0=0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TL
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết
NU
Xem chi tiết
NM
Xem chi tiết
NO
Xem chi tiết