`@TH1:x-1 >= 0<=>x > 1=>|x-1|=x-1`
Có: `x-(x-1)=x-x+1=1`
`@TH2:x-1 < 0<=>x < 1=>|x-1|=1-x`
Có: `x-(1-x)=x-1+x=2x-1`
Ta có x >= 1
\(=x-\left|x-1\right|=x-\left(x-1\right)=x-x+1=1\)
Với x >= 1, ta có |x - 1| = x - 1
x - |x - 1| = x - (x - 1) = x - x + 1 = 1