Ta có : \(\frac{x}{6}=\frac{24}{x}\)
\(\Leftrightarrow x\cdot x=6\cdot24\)
\(\Leftrightarrow x^2=144\)
\(\Rightarrow x=\pm12\)
\(\frac{x}{6}=\frac{24}{x}\)
\(=>x^2=24.6\)
=> \(x^2=144\)
=> x = \(12\)
\(\frac{x}{6}=\frac{24}{x}\)
\(\Rightarrow x.x=6.24\)
\(hayx^2=144\)
\(\Rightarrow x=\pm12\)
Vậy ...
\(\frac{x}{6}=\frac{24}{x}\)
\(->x.x=6.24\)
\(->x^2=144\)
\(->x^2=\sqrt{144}\)
\(->x=12\)
\(\frac{x}{6}=\frac{24}{x}\)
\(\Rightarrow x^2=24.6=144\)
\(\Rightarrow x=12\)
x/6=24/x
Quy đồng mẫu ta có:
xx/(6x)=24*6/(6x)
xx/(6x)=144/(6x)
nhân hai vế cho 6x ta có:
xx=144
Ta thấy: 12*12=144
Vậy:x=12
\(\frac{x}{6}=\frac{24}{x}\)
\(\Leftrightarrow x.x=24.6\)
\(\Leftrightarrow x^2=144\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)