\(\frac{x}{2}=\frac{y}{5}\)
Ta có : \(\left(\frac{x}{2}\right)^2=\frac{x}{2}\cdot\frac{x}{2}=\frac{x}{2}\cdot\frac{y}{5}=\frac{xy}{10}=\frac{90}{10}=9\)
Từ đây suy ra \(\left(\frac{x}{2}\right)^2=9\)
\(\Rightarrow\frac{x}{2}=\left\{\pm3\right\}\)
TH1: \(\frac{x}{2}=\frac{y}{5}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=15\end{cases}}}\)
TH2: \(\frac{x}{2}=\frac{y}{5}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-3\\\frac{y}{5}=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=-6\\y=-15\end{cases}}\)
Vậy....
Đề bài: \(\frac{x}{2}\)= \(\frac{y}{5}\) và xy = 90
Ta có: \(\frac{x}{2}\)= \(\frac{y}{5}\)= k ( k thuộc Q )
\(\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
Mà xy = 90
<=> 2k.5k = 90
<=> 10k\(^2\) = 90
<=> k\(^2\)= 90 : 10
<=> k\(^2\)= 9
<=>\(\hept{\begin{cases}k=3\\k=\left(-3\right)\end{cases}}\)
Đặt : \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
\(\Rightarrow2k.5k=90\)
\(\Rightarrow7k=90\)
\(\Rightarrow k=\frac{90}{7}\)
........
Đặt \(\frac{x}{2}=\frac{y}{5}=k\left(k\ne0\right)\)
\(\Rightarrow x=2k\); \(y=5k\)
\(\Rightarrow xy=2k.5k=10k^2=90\)
\(\Rightarrow k^2=9\)\(\Rightarrow k=\pm3\)
Nếu \(k=-3\)\(\Rightarrow x=-3.2=-6\); \(y=-3.5=-15\)
Nếu \(k=3\)\(\Rightarrow x=3.2=6\); \(y=3.5=15\)
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là \(\left(-6;-15\right)\), \(\left(6;15\right)\)