\(\frac{x-7}{y-6}=\frac{7}{6}\) và x - y = -4
Cách 1: x - y = -4 => x = (-4) + y => x = -4 - y
Thay x = 4 + y vào ta có :
\(\frac{-4-y-7}{y-6}=\frac{7}{6}\)
=> \(\frac{-4-7-y}{y-6}=\frac{7}{6}\)
=> \(\frac{-11-y}{y-6}=\frac{7}{6}\)
=> \(6\left(-11-y\right)=7\left(y-6\right)\)
=> \(-66-6y=7y-42\)
=> \(y=-\frac{24}{13}\)
Lại có : x = -4 - y => x = \(-4-\left(-\frac{24}{13}\right)=-\frac{28}{13}\)
Vậy \(\left(x,y\right)\in\left(-\frac{24}{13},-\frac{28}{13}\right)\)
\(\frac{x-7}{y-6}=\frac{7}{6}\)và \(x-y=-4\)
\(x-y=-4\Rightarrow x=-4+y\)
\(\frac{-4+y-7}{y-6}=\frac{7}{6}\)
\(\frac{-11+y}{y-6}=\frac{7}{6}\)
\(\Rightarrow\left(-11+y\right).6=\left(y-6\right).7\)
\(\Rightarrow-66+y.6=y.7-42\)
\(\Rightarrow y6-y7=-42+66\)
\(\Rightarrow-y=24\Rightarrow y=-24\)
Vì \(x=-4+y\)
\(\Rightarrow x=-4-24=-28\)
Vậy \(\left(x;y\right)=\left(-28;-24\right)\)