\(\left(\sqrt{x}+3\sqrt{y}\right)\left(2\sqrt{x}-\sqrt{y}\right)=2x-\sqrt{xy}+6\sqrt{xy}-3y\)
\(=2x-3y+5\sqrt{xy}\)
\(=2x-3y+5.\left(x-2y\right)=2x-3y+5x-10y=7x-13y\)
\(\left(\sqrt{x}+3\sqrt{y}\right)\left(2\sqrt{x}-\sqrt{y}\right)=2x-\sqrt{xy}+6\sqrt{xy}-3y\)
\(=2x-3y+5\sqrt{xy}\)
\(=2x-3y+5.\left(x-2y\right)=2x-3y+5x-10y=7x-13y\)
Cho biểu thức:
\(A=\left[\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right]:\left[\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-y}-\frac{x+y}{\sqrt{xy}}\right]\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A biết \(x=3;y=4+2\sqrt{3}\)
Tính giá trị của các biểu thức sau:
a) \(\frac{\left(1+\sqrt{x}\right)^2-4\sqrt{x}}{1-\sqrt{x}}\) với x = 2
b) \(\frac{\left(\sqrt{x}-\sqrt{y}\right)+4\sqrt{xy}}{1+\sqrt{xy}}\) với x = 2, y = 3
c) \(\frac{x+y}{y}\). \(\sqrt{\frac{x^2y^2+2x^2y^3+xy^4}{x^2+3xy+y^2}}\) với x =2, y =1
cho x,y,z thỏa man: xy+yz+zx=3. Tìm giá trị nhỏ nhất của biểu thức
P=\(\sqrt{2\text{x}^2+\text{x}y+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+z\text{x}+2\text{x}^2}\)
Tính giá trị của biểu thức sau:
\(B=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\frac{2x^2}{\sqrt{x}}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\sqrt{xy}-3y}{x-y}\) tại x=1997; y=30303
Cho x,y>0 thỏa \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)
Tính giá trị P=\(\dfrac{x+3y}{\left(\sqrt{x}+3\sqrt{y}\right)\sqrt{x+4y+4\sqrt{xy}}}\)
Mn giúp em với ạ em xin cảm ơn trước ạ<3
cho các số thực dương x,y thỏa mãn điều kiện x+y=2016.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
Cho x,y là các số thực dương thỏa mãn : \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=\dfrac{5}{2}\)
Tính giá trị biểu thức : A=\(\dfrac{2x+3\sqrt{xy}}{2x-3\sqrt{xy}}\)
Giúp mình với !!!!!!!!
B=\(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x-y}{\sqrt{xy}}\right)\)
a)Rút gọn biểu thức
b) tính giá trị của B khi x=3, y= \(4+2\sqrt{3}\)
Giups mik với !!1 Mình đang cần gấp !! thanks nhìu nha!!
Cho các số thực dương x, y, z thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\). tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)