Ta có \(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0\\\left|y^2-9\right|^{2014}\ge0\end{cases}\forall x,y}\)
\(\Leftrightarrow\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}\ge0\forall x,y\)
Do đó để ( x - 2)2012 + |y2 - 9|2014 = 0 \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\\left|y^2-9\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y^2-9=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)
~~~~ Học tốt ~~~~~
Vì \(\left(x-2\right)^{2012}\ge0\forall x\)và \(\left|y^2-9\right|^{2014}\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}\ge0\forall x,y\)
mà \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)( giả thiết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)
Vậy \(\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)