NT

(x-2015)^2014 + (x-2016)^2014 = 1

SG
2 tháng 8 2016 lúc 23:11

Vì \(\left(x-2015\right)^{2014}\ge0;\left(x-2016\right)^{2014}\ge0\)

=> \(\left(x-2015\right)^{2014}+\left(x-2016\right)^{2014}\ge0\)

Mà x - 2015 > x - 2016 => \(\left(x-2015\right)^{2014}>\left(x-2016\right)^{2014}\)

=> (x - 2015)2014 = 1;(x - 2016)2014 = 0

=> x - 2016 = 0

=> x = 2016

Bình luận (0)
ML
3 tháng 8 2016 lúc 0:42

Đặt \(x-2015=a;\text{ }2016-x=b\)

\(\Rightarrow a+b=1\text{ }\left(1\right)\)

Từ phương trình đã cho, ta được \(a^{2014}+b^{2014}=1\text{ }\left(2\right)\)

Nếu \(a< 0\)\(\left(1\right)\Rightarrow b=1-a>1\)\(\Rightarrow a^{2014}+b^{2014}>1\)(không thỏa (2))

Tương tự với b

Vậy \(a,b\ge0\)

\(\left(2\right)\Rightarrow a^{2014};\text{ }b^{2014}\le1\Rightarrow-1\le a,b\le1\)

\(\Rightarrow0\le a,b\le1\)

\(\left(1\right)+\left(2\right)\Rightarrow a+b=a^{2014}+b^{2014}\)

\(\Leftrightarrow a\left(1-a^{2013}\right)+b\left(1-b^{2013}\right)=0\text{ }\left(3\right)\)

Ta lại có: \(0\le a,b\le1\Rightarrow\hept{\begin{cases}1-a^{2013}\ge0\\1-b^{2013}\ge0\end{cases}}\)

\(\Rightarrow a\left(1-a^{2013}\right)+b\left(1-b^{2013}\right)\ge0\forall a,b\in\left[0;1\right]\)

Dấu bằng chỉ xảy ra khi \(a,b\in\left\{0;1\right\}\)

Do \(a+b=1\) nên \(\left(a;b\right)\in\left\{\left(0;1\right);\text{ }\left(1;0\right)\right\}\)

+TH1: \(\hept{\begin{cases}a=1\\b=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2015=1\\2016-x=0\end{cases}}\Leftrightarrow x=2016\)

+TH2 \(\hept{\begin{cases}a=0\\b=1\end{cases}\Leftrightarrow\hept{\begin{cases}x-2015=0\\2016-x=1\end{cases}}\Leftrightarrow}x=2015\)

Vậy \(x\in\left\{2015;\text{ }2016\right\}\)

Bình luận (0)
SL
3 tháng 8 2016 lúc 7:25

Vì (x−2015)^2014≥0;(x−2016)^2014≥0

=> (x−2015)^2014+(x−2016)^2014≥0

Mà x - 2015 > x - 2016 => (x−2015)^2014>(x−2016)^2014

=> (x - 2015)^2014 = 1;(x - 2016)^2014 = 0

=> x - 2016 = 0

=> x = 2016

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
NQ
Xem chi tiết
LM
Xem chi tiết
HN
Xem chi tiết
TL
Xem chi tiết
NH
Xem chi tiết
TA
Xem chi tiết