áp dụng bđt cauchy cho 2 số dương, ta có
\(x+y>=2\sqrt{xy}\)
\(x+z>=2\sqrt{xz}\)
\(y+z>=2\sqrt{yz}\)
khi đó \(Q=<\frac{xyz}{2\sqrt{xy}.2\sqrt{xz}.2\sqrt{yz}}\)
\(Q=<\frac{1}{8}\)
dấu = xảy ra khi và chỉ khi x=y=z
vậy max Q=1/8 khi x=y=z
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
áp dụng bđt cauchy cho 2 số dương, ta có
\(x+y>=2\sqrt{xy}\)
\(x+z>=2\sqrt{xz}\)
\(y+z>=2\sqrt{yz}\)
khi đó \(Q=<\frac{xyz}{2\sqrt{xy}.2\sqrt{xz}.2\sqrt{yz}}\)
\(Q=<\frac{1}{8}\)
dấu = xảy ra khi và chỉ khi x=y=z
vậy max Q=1/8 khi x=y=z
Cho x,y,z>0 thỏa mãn xyz=1 Tìm GTLN
\(A=\frac{1}{\left(3x+1\right)\left(y+z\right)+x}+\frac{1}{\left(3y+1\right)\left(x+z\right)+y}+\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
a , cho x,y,z >0 ; xyz =1
CMR: \(\frac{x^3}{\left(1+y\right).\left(1+z\right)}\)+\(\frac{y^3}{\left(1+z\right).\left(1+x\right)}\)+\(\frac{z^3}{\left(1+x\right).\left(1+y\right)}\ge\frac{3}{4}\)
Tìm GTLN của biểu thức:
\(P=\frac{x}{1+y+z}+\frac{y}{1+x+z}+\frac{z}{1+x+y}+\left(1-x\right).\left(1-y\right).\left(1-z\right)\)
Với mọi x,y,z biến đổi nhưng luôn thỏa mãn \(0\le x,y,z\le1\)
giả sử x,y,z là các số thực dương thỏa mãn x+y+z=xyz. cmr \(\frac{x}{1+x^2}+\frac{18y}{1+y^2}+\frac{4z}{1+z^2}\)=\(\frac{xyz\left(22x+5y+19z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
Cho x,y,z là các số dương thỏa mãn x+y+z=xyz
CMR: \(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Bài 1: Cho x,y thỏa mãn \(x^2+y^2-xy=4\). Tìm GTLN và GTNN của A = \(x^2+y^2\)
Bài 2: Cho x,y>0 thỏa mãn xyz=1. Tìm GTNN của
E = \(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
cho x,y.z>0 thỏa mãn xyz=1.Tìm GTLN của biểu thức :
C=\(\frac{1}{\left(x+1\right)^2+y^2+1}\)+\(\frac{1}{\left(y+1\right)^2+z^2+1}\)+\(\frac{1}{\left(z+1\right)^2+x^2+1}\)
mau giúp mình
Cho xyz=1. Tính \(E=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
Tính giá trị của biểu thức A = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\) biết x+y+z=0 và xyz khác 0