sửa đề: \(\dfrac{1}{xy}>=\dfrac{4}{\left(x+y\right)^2}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
=>(x-y)^2>=0(luôn đúng)
sửa đề: \(\dfrac{1}{xy}>=\dfrac{4}{\left(x+y\right)^2}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
=>(x-y)^2>=0(luôn đúng)
Cho x,y,z >0 và xy\(\ge\)12 ,yz\(\ge8\) CMR:
(x+y+z) +2(\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\)) +\(\dfrac{8}{xyz}\) \(\ge\dfrac{121}{12}\)
Giải giúp mình với !!!
Cho các số dương x,y,z thỏa mãn \(xy+yz+zx=1\)
Chứng minh rằng \(\dfrac{x}{1+yz}+\dfrac{y}{1+zx}+\dfrac{z}{1+xy}\ge\dfrac{3\sqrt{3}}{4}\)
Cho \(x\ge y\ge z\ge0\). Chứng minh BĐT sau
a/ \(xy^3+yz^3+zx^3\ge xz^3+zy^3+yx^3\)
b/ \(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\ge\dfrac{x^2z}{y}+\dfrac{y^2x}{z}+\dfrac{z^2y}{x}\)
Cho x,y,z>0 tm\(xy+yz+zx\ge3\). C/m
\(\dfrac{x^3}{\sqrt{y^2+3}}+\dfrac{y^3}{\sqrt{z^2+3}}+\dfrac{z^3}{\sqrt{x^2+3}}\ge\dfrac{1}{2}\)
Cho x;y;z;t thỏa mãn: \(xyzt=1\) Chứng minh rằng: \(\dfrac{1}{x^2\left(yz+zt+ty\right)}+\dfrac{1}{y^2\left(xz+zt+tx\right)}+\dfrac{1}{z^2\left(xy+xt+tz\right)}+\dfrac{1}{t^2\left(xy+yz+xz\right)}\ge\dfrac{4}{3}\)
Cho x, y, z thỏa mãn \(\dfrac{1}{3^x}+\dfrac{1}{3^y}+\dfrac{1}{3^z}=1\). Chứng minh rằng:
\(\dfrac{9^x}{3^x+3^{y+z}}+\dfrac{9^y}{3^y+3^{z+x}}+\dfrac{9^z}{3^z+3^{x+y}}\ge\dfrac{3^x+3^y+3^z}{4}\)
chứng minh với x,y,z>0,xyz=1
\(\dfrac{1}{x^2\left(y+z\right)}+\dfrac{1}{y^2\left(z+x\right)}+\dfrac{1}{z^2\left(x+y\right)}\ge\dfrac{3}{2}\)
(giúp mình với bài này khó quá)
Bài 1: chứng minh rằng , với mọi x, y ta có :\(\dfrac{x^4+y^4}{2}\ge\dfrac{x+y}{2}\times\dfrac{x^3+y^3}{2}\)
Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)