\(A=\frac{x^2-2x+2014}{x^2}=1-\frac{2}{x}+\frac{2014}{x^2}\)
Đặt \(\frac{1}{x}=a\)
=> \(A=1-2a+2014a^2\)
<=>\(A=2014\left(a^2-\frac{1}{1007}a+\frac{1}{2014}\right)\)
<=>\(A=2014\left(a^2-2\times a\times\frac{1}{2014}+\frac{1}{2014^2}-\frac{1}{2014^2}+\frac{1}{2014}\right)\)
<=>\(A=2014\left[\left(a-\frac{1}{2014}\right)^2+\left(\frac{1}{2014}-\frac{1}{2014^2}\right)\right]\)
<=>\(A=2014\left(a-\frac{1}{2014}\right)^2+2014\left(\frac{1}{2014}-\frac{1}{2014^2}\right)\)
<=>\(A=2014\left(a-\frac{1}{2014}\right)^2+1-\frac{1}{2014}\)
<=>\(A=2014\left(a-\frac{1}{2014}^2\right)+\frac{2013}{2014}\ge\frac{2013}{2014}\)
Vậy A đạt GTNN <=> \(A=\frac{2013}{2014}<=>a=\frac{1}{x}=\frac{1}{2014}<=>x=2014\)
nhầm Amin = \(\frac{2013}{2014}\) khi và chỉ khi x = 2014 mình làm theo miền giá trị