H24

với p, q là số nguyên tố lớn hơn 5, chứng minh rằng (p mũ 4 - q mũ 4) chia hết cho 240

H24
2 tháng 1 2016 lúc 16:39

click chữ xanh nha:Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bình luận (0)
H24
2 tháng 1 2016 lúc 16:41

Đây thì chi tiết hơn:Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bình luận (0)
NQ
2 tháng 1 2016 lúc 16:44

Chia hết cho 240  = 24.3.5

p4 - q4 = (p2 - q2)(p2 + q2)

p;q cũng loại chẵn lẻ

Thì (p2 - q2)(p2 + q2) chia hết cho 16

p;q khác loại

Thì (p2 - q2)(p2 + q2) không chia hết cho 16 nhưng p;q là số nguyên tố lớn hơn 5 < = > loại

Nếu p;q cùng chia 3 dư 1 hoặc cùng chia 3 dư 2 thì

(p2 - q2) chia hết cho 3 < = > Tích chia hết cho 3

Nếu p ; q có số dư khác nhau khi chia cho 3 (khác 0)

Thì p2 - q2 chia hết cho 3 < = ) Tích chia hết cho 3

p ; q chia 5 dư 1;2;3;4 

Do đó (p2 - q2)(p2 + q2) chia hết cho 5

Vậy (p2 - q2)(p2 + q2) chia hết cho 16.3.5 = 240

=> ĐPCM 

 

Bình luận (0)
NT
2 tháng 1 2016 lúc 16:55

mik đồng ý với Nguyễn Ngọc Quý

Bình luận (0)
YA
12 tháng 1 2018 lúc 21:58

dung rui

Bình luận (0)
H24
20 tháng 2 2021 lúc 21:14

4 năm rồi chắc bạn ko cần nữa ha

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NC
Xem chi tiết
TH
Xem chi tiết
LA
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết
BT
Xem chi tiết
NH
Xem chi tiết