PH

với \(n\in Z,\) chứng minh \(n\left(n+2\right)\left(73n^2-1\right)\) chia hết cho 24

HV
18 tháng 2 2020 lúc 10:28

\(A=n\left(n+2\right)\left(73n^2-1\right)=n\left(n+2\right)\left(n^2-1\right)+72n^3\left(n+2\right)=\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)+72n^3\left(n+2\right)\)

Ta thấy n-1 , n , n+1, n+2 là tích 4 số tự nhiên liên tiếp nên có 2 số chẵn liên tiếp sẽ có tích chia hết cho 8

=> (n-1)n(n+1)(n+2) chia hết cho 8 

Dễ dàng lập luận đc (n-1)n(n+1)(n+2) chia hết cho 3

mà (8,3)=1

=> (n-1)n(n+1)(n+2) chia hết cho 24 

mà 72n^3(n+2) chia hết cho 24 
=> A chia hết cho 24 

Bình luận (0)
 Khách vãng lai đã xóa