\(A=19.2^{3n}+17=19.8^n+17\)
Với \(n=2k\):
\(A=19.16^k+17\equiv1.1^k+2\left(mod3\right)\equiv0\left(mod3\right)\)
mà \(A>3\)nên \(A\)là hợp số.
Với \(n=4k+1\):
\(A=19.8^{4k+1}+17\equiv9.8^{4k}+4\left(mod13\right)\equiv9.1^k+4\left(mod13\right)\equiv0\left(mod13\right)\)
mà \(A>13\)nên \(A\)là hợp số.
Với \(n=4k+3\):
\(A=19.8^{4k+3}+17=19.8^3.\left(8^4\right)^k+17\equiv3.1^k+2\left(mod5\right)\equiv0\left(mod5\right)\)
mà \(A>5\)nên \(A\)là hợp số.