Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HB

Với hai số thực không âm a,b thỏa mãn a^2+b^2=4. Tìm giá trị lớn nhất của biểu thức M= ab/(a+b+2)

H24
28 tháng 5 2018 lúc 9:10

Ta có: \(a^2+b^2=4\left(gt\right)\Rightarrow2ab=\left(a+b\right)^2-4\)

\(\Rightarrow2M=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Mà \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\sqrt{2}\)

\(\Rightarrow M\le\sqrt{2}-1\)

Dấu \("="\Leftrightarrow a=b=\sqrt{2}\)

Vậy GTLN của \(M=\frac{ab}{a+b+2}=\sqrt{2}-1\)khi \(a=b=\sqrt{2}\)

Bình luận (0)
VS
27 tháng 5 2018 lúc 22:34

Ta có a2+b2=4

<=> (a+b)2=4+2ab

<=> (a+b)2-4=2ab

<=> (a+b-2)(a+b+2)=2ab

<=> \(\frac{\left(a+b-2\right)\left(a+b+2\right)}{2}=ab\)

Ta có \(M=\frac{ab}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{2\left(a+b+2\right)}=\frac{a+b-2}{2}=\frac{a}{2}+\frac{b}{2}-1\)

Áp dụng BĐT Bunyakovsky cho 2 số a/2 và b/2 ta có

\(\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\frac{1}{2}.4\left(doa^2+b^2=4\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le2\)

\(\Rightarrow\frac{a}{2}+\frac{b}{2}\le\sqrt{2}\)

Do đó \(M=\frac{a}{2}+\frac{b}{2}-1\le\sqrt{2}-1\)

Vậy Max M = \(\sqrt{2}-1\)

Bình luận (0)
HB
28 tháng 5 2018 lúc 23:03

Cảm ơn nha!!

Bình luận (0)
HB
28 tháng 5 2018 lúc 23:29

Sao ra được a=b=\(\sqrt{ }\)vậy

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
DN
Xem chi tiết
NC
Xem chi tiết
2H
Xem chi tiết
BT
Xem chi tiết
HT
Xem chi tiết
TV
Xem chi tiết
DM
Xem chi tiết
DS
Xem chi tiết