MB

Với giá trị nào của x thì mỗi căn thức sau đây có nghĩa:

a) \(\sqrt{\dfrac{x}{3}}\)

b) \(\sqrt{-5x}\)

c) \(\sqrt{4-x}\)

d) \(\sqrt{3x+7}\)

e) \(\sqrt{-3x+4}\)

f) \(\sqrt{\dfrac{1}{-1+x}}\)

g) \(\sqrt{1+x^2}\)

h) \(\sqrt{\dfrac{5}{x-2}}\)

LL
15 tháng 9 2021 lúc 12:21

a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)

b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)

c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)

d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)

e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)

f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)

\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)

g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)

h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)

\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Bình luận (1)
HP
15 tháng 9 2021 lúc 12:23

a. \(x\ge0\)

b. \(x< 0\)

c. \(x\le4\)

d. \(x\ge\dfrac{-7}{3}\)

e. \(x\le\dfrac{4}{3}\)

f. \(x>1\)

g. Mọi x

h. \(x>2\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
KN
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
TM
Xem chi tiết
HT
Xem chi tiết