H24

Với giá trị nào của x thì biểu thức: P(x)=\(\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\)đạt giá trị nhỏ nhất.

NM
8 tháng 9 2021 lúc 8:11

\(P\left(x\right)=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\\ P\left(x\right)=\dfrac{4x^2\left(x^2+2x+5\right)+8x\left(x^2+2x+5\right)+20\left(x^2+2x+5\right)+256}{x^2+2x+5}\\ P\left(x\right)=4\left(x^2+2x+5\right)+\dfrac{256}{x^2+2x+5}\\ \ge2\sqrt{\dfrac{4\left(x^2+2x+5\right)\cdot256}{x^2+2x+5}}=2\sqrt{1024}=64\left(BĐTcosi\right)\)

Dấu \("="\Leftrightarrow4\left(x^2+2x+5\right)=\dfrac{256}{x^2+2x+5}\)

\(\Leftrightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

 

 

 

Bình luận (0)
MH
8 tháng 9 2021 lúc 8:10

P(x)=\(\dfrac{\text{(4x^2+8x^3+20x^2)+(8x^3+16x^2+40x)+(20x^2+40x+100)+256}}{x^2+2x+5}\)

      =(4x^2+8x+20x) +\(\dfrac{256}{x^2+2x+5}\)

áp dụng BĐT Cosi a+b≥\(2\sqrt{ab}\)

=>P(x)≥64

Dấu = xảy ra khi x=-1 hoặc x=3

 

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
NC
Xem chi tiết
ML
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết
HT
Xem chi tiết
TA
Xem chi tiết