Bài 5. Khoảng cách

H24

Với giả thiết ở Bài tập 4, hãy:

a) Chứng minh rằng \(BC\parallel \left( {SAD} \right)\) và tính khoảng cách giữa \(BC\) và mặt phẳng \(\left( {SAD} \right)\).

b) Chứng minh rằng \(BD \bot \left( {SAC} \right)\) và tính khoảng cách giữa hai đường thẳng \(BD\) và \(SC\).

QL
22 tháng 9 2023 lúc 20:51

loading...

a) \(ABCD\) là hình vuông \( \Rightarrow BC\parallel A{\rm{D}}\)

Mà \(A{\rm{D}} \subset \left( {SA{\rm{D}}} \right)\)

\( \Rightarrow BC\parallel \left( {SAD} \right) \Rightarrow d\left( {BC,\left( {SAD} \right)} \right) = d\left( {B,\left( {SAD} \right)} \right)\)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\)

\(ABCD\) là hình vuông \( \Rightarrow AB \bot A{\rm{D}}\)

\( \Rightarrow AB \bot \left( {SA{\rm{D}}} \right) \Rightarrow d\left( {B,\left( {SA{\rm{D}}} \right)} \right) = AB = a\)

Vậy \(d\left( {BC,\left( {SAD} \right)} \right) = a\).

b) \(ABCD\) là hình vuông \( \Rightarrow B{\rm{D}} \bot A{\rm{C}}\)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot B{\rm{D}}\)

\( \Rightarrow B{\rm{D}} \bot \left( {SAC} \right)\)

Gọi \(O = AC \cap B{\rm{D}}\), kẻ \(OH \bot SC\left( {H \in SC} \right)\)

\(B{\rm{D}} \bot \left( {SAC} \right) \Rightarrow B{\rm{D}} \bot OH\)

\( \Rightarrow d\left( {B{\rm{D}},SC} \right) = OH\)

\(\Delta ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2  \Rightarrow OC = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC \Rightarrow \Delta SAC\) vuông tại \(A\)\( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}}  = a\sqrt 3 \)

\(\Delta SAC \backsim \Delta OHC\,(g.g) \Rightarrow \frac{{SA}}{{OH}} = \frac{{SC}}{{OC}} \Rightarrow OH = \frac{{SA.OC}}{{SC}} = \frac{{a\sqrt 6 }}{6}\)

Vậy \(d\left( {B{\rm{D}},SC} \right) = \frac{{a\sqrt 6 }}{6}\).

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết