Bài 5. Khoảng cách

H24

Với giả thiết ở Bài tập 2, hãy:

a) Chứng minh rằng \(MN\parallel BC\). Tính khoảng cách giữa hai đường thẳng \(MN\) và \(BC\).

b) Chứng minh rằng \(MP\parallel \left( {BCD} \right)\). Tính khoảng cách từ đường thẳng \(MP\) đến mặt phẳng \(\left( {BCD} \right)\).

c) Chứng minh rằng \(\left( {MNP} \right)\parallel \left( {BCD} \right)\). Tính khoảng cách giữa hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {BCD} \right)\).

QL
22 tháng 9 2023 lúc 20:51

loading...

a) \(M\) là trung điểm của \(AB\)

\(N\) là trung điểm của \(AC\)

\( \Rightarrow MN\) là đường trung bình của tam giác \(ABC\)

\( \Rightarrow MN\parallel BC\)

\(AB \bot BC \Rightarrow MB \bot BC \Rightarrow d\left( {MN,BC} \right) = MB = \frac{1}{2}AB = \frac{a}{2}\)

b) \(M\) là trung điểm của \(AB\)

\(P\) là trung điểm của \(A{\rm{D}}\)

\( \Rightarrow MP\) là đường trung bình của tam giác \(ABD\)

\(\left. \begin{array}{l} \Rightarrow MP\parallel BD\\B{\rm{D}} \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow MP\parallel \left( {BC{\rm{D}}} \right)\)

\(AB \bot \left( {BCD} \right) \Rightarrow MB \bot \left( {BCD} \right) \Rightarrow d\left( {MP,\left( {BCD} \right)} \right) = d\left( {M,\left( {BCD} \right)} \right) = MB = \frac{a}{2}\)

c)

\(\left. \begin{array}{l}\left. \begin{array}{l} \Rightarrow MN\parallel BC\\B{\rm{C}} \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {BC{\rm{D}}} \right)\\MP\parallel \left( {BC{\rm{D}}} \right)\\MN,MP \subset \left( {MNP} \right)\end{array} \right\} \Rightarrow \left( {MNP} \right)\parallel \left( {BC{\rm{D}}} \right)\)

\( \Rightarrow d\left( {\left( {MNP} \right),\left( {BCD} \right)} \right) = d\left( {M,\left( {BCD} \right)} \right) = MB = \frac{a}{2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết