NL

Với \(a,b,c\in\left[1;2\right],\)hãy chứng minh bất đẳng thức sau:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

H24
22 tháng 8 2016 lúc 21:12

Không mất tính tổng quát giả sử \(1\le a\le b\le c\le2\)\(\Rightarrow\hept{\begin{cases}\frac{a}{b}\le1\\\frac{b}{c}\le1\end{cases}\Rightarrow\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\ge0}\)(1)
Tương tự ta có \(\left(1-\frac{b}{a}\right)\left(1-\frac{c}{b}\right)\ge0\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{b}\right)\le2\left(\frac{a}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{a}{c}\right)+3\le5+2\left(\frac{a}{c}+\frac{c}{a}\right)\)(2)
Mà :\(\left(2-\frac{a}{c}\right)\left(\frac{1}{2}-\frac{a}{c}\right)\le0\Rightarrow\frac{1}{2}-\frac{a}{c}\le0\Leftrightarrow\frac{1}{2}\le\frac{a}{c}\le1\Rightarrow\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)
\(\left(3\right)\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le5+\frac{2.5}{2}=10\Rightarrow dpcm\)
Dấu= xảy ra khi \(\left(a,b,c\right)\in\left\{\left(1,1,2\right);\left(2,2,1\right)\right\}\)và các cặp hoán vị của nó 
\(\)
 

Bình luận (0)
NL
22 tháng 8 2016 lúc 20:25

1/  Cho \(a,b,c\ge1\)Chứng minh rằng:

\(\frac{1}{a\left(b+1\right)}+\frac{1}{b\left(c+1\right)}+\frac{1}{c\left(a+1\right)}\ge\frac{3}{1+abc}\)

2/  Cho \(a,b,c,d\in\left[0;1\right].\)Chứng minh rằng:

\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}.\)

3/  Giả sử\(a,b>0\)và 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
KN
Xem chi tiết
HD
Xem chi tiết
NK
Xem chi tiết
NT
Xem chi tiết
BQ
Xem chi tiết
HM
Xem chi tiết