câu naỳ hình như có trên gg cậu lên đấy mà tra nhé
câu naỳ hình như có trên gg cậu lên đấy mà tra nhé
cho a, b, c \(\in\left[1;2\right]\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
Với \(a,b,c\in\left[1;2\right],\)hãy chứng minh bất đẳng thức sau:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
CMR: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) với mọi a,b,c >0
Cho \(a,b,c\in\left[1;2\right]\).Chứng minh : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{81}{8}\)
cho \(a,b,c\in\left[0,1\right].CMR:\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
Cho các số thực dương a,b,c. CMR:
\(\left(a+\frac{1}{b}-1\right)\left(b+\frac{1}{c}-1\right)+\left(b+\frac{1}{c}-1\right)\left(c+\frac{1}{a}-1\right)+\left(c+\frac{1}{a}-1\right)\left(a+\frac{1}{b}-1\right)\ge3\)
CMR: Với mọi a,b,c>0
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{b\left(b+c\right)}\left(a-b\right)^2+\frac{1}{c\left(c+a\right)}\left(b-c\right)^2+\frac{1}{a\left(a+b\right)}\left(c-a\right)^2\)
Cho a, b, c > 0 và a + b + c = 3. CMR: \(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
a;b;c>0 thỏa mãn abc=1. CMR:
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)