Đặt b+c=x , c+a=y , a+b=z => a+b+c=(x+y+z)/2
=> a=(y+z-x)/2 và b=(x+z-y)/2 và c=(x+y-z)/2
VT = a/(a+b) +b/(b+c) +c/(c+a)
=(y+z-x)/(2x) + (x+z-y)\(2y) + (x+y-z)/(2z)
=(y/x + z/x -1+ x/y + z/y -1+ x/z + y/z -1 )/2
=( y/x+ z/x + x/y + z/y + x/z + y/z -3 )/2
Áp dụng Bđt cô si (3 lần cho 3 cặp nghich đảo)
( y/x + x/y ) + (z/y + y/z) + (x/z+ z/x) >= 2x3 =6 <=>
( y/x + x/y ) + (z/y + y/z) + (x/z+ z/x) -3 >= 3<=>
[( y/x + x/y ) + (z/y + y/z) + (x/z+ z/x) -3]/2 >= 3/2<=>
VT >= 3/2
Dấu = xảy ra khi: x=y=z <=> a=b=c
Ta Đặt
\(b+c=x;c+a=y;a+b=z\)
\(\Rightarrow a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)
Khi đó VT trở thành:
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\cdot\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
Áp dụng BĐT cô-si, ta được;
VT\(\ge\frac{1}{2}\left(6-3\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\)
Ta có: \(a,b,c>0\)
Áp dụng BĐT Cauchy-schwarz dạng Engel ta có:
\(\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+ac+bc\right)}\)
Ta chứng minh BĐT phụ:
\(ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)( b tự chứng minh. không chứng minh được thì bảo mình )
Áp dụng:
\(\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+ac+bc\right)}=\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}.\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
đpcm