Cho các số thực dương a,b,c thỏa mãn f a b + b c + c a + 3 + f 2 - 2 a 2 - 2 b 2 - 2 c 2 = 1 với hàm số f x = 4 x 4 x + 4 Giá trị lớn nhất của biểu thức P = a 2 + b 2 + c 2 - 1 a + b + c + 3 bằng
A. 17 6
B. 3
C. 13 6
D. 13 4
Cho các số thực dương a,b,c. tìm giá trị nhỏ nhất của biểu thức
\(M=\frac{3a^4+3b^4+25c^3+2}{\left(a+b+c\right)^3}\)
Cho a, b, c là các số thực dương khác 1 thỏa log a 2 b + log b 2 c = log a c d - 2 log b c b - 3 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = log a b - log b c . Giá trị của biểu thức S =2m+3M bằng
A. S=1/3.
B. S =2/3.
C. S =2.
D. S =3.
Cho a, b, c là các số thực dương khác 1 thỏa log a 2 b + log b 2 c = log a c b - 2 log b c b - 3
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = log a b - log b c Giá trị của biểu thức S = 2 m + 3 M bằng
A. S = 1 3
B. S = 2 3
C. S = 2
D. S = 3
Cho log a b = 2 , với a, b là các số thực dương và 1 khác 1. Tính giá trị biểu thức T = log a 2 b 6 + log a b
A. T = 8
B. T = 7
C. T = 5
D. T = 6
Cho các số thực dương x, y thỏa mãn log x + y x 2 + y 2 ≤ 1 .Giá trị lớn nhất của biểu thức A= 48 ( x + y ) 3 - 156 ( x + y ) 2 + 133 ( x + y ) + 4 là
A. 29.
B. 1369/36.
C. 30.
D. 505/36
Rút gọn biểu thức T = a 2 . ( a - 2 . b 3 ) . b - 1 ( a - 1 . b ) 3 . a - 5 . b - 2 với a, b là hai số thực dương
A. T = a 4 . b 6
B. T = a 6 . b 6
C. T = a 4 . b 4
D. T = a 6 . b 4
Cho phương trình 4 - x - a . log 3 x 2 - 2 x + 3 + 2 - x 2 + 2 x . log 1 3 2 x - a + 2 = 0 . Tập tất cả các giá trị của tham số a để phương trình có 4 nghiệm x 1 ; x 2 ; x 3 ; x 4 thỏa mãn là (c;d). Khi đó giá trị biểu thức T = 2 c + 2 d bằng:
A. 5
B. 2
C. 3
D. 4
Cho log a b = 2 với a, b là các số thực dương và a ≠ 1 . Tính giá trị biểu thức: P = log a 2 b 6 + log a b
A. P = -5
B. P = 25
C. P = 7
D. P = 5