QD

Với a , b , c là các số thực dương: Chứng minh rằng với \(abc=1\)

\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)

AH
1 tháng 3 2017 lúc 13:02

Lời giải:
Trước tiên ta đi cm bất đẳng thức sau: với \(a,b>0\) thì \(a^3+b^3\geq ab(a+b)\)

BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) ( luôn đúng)

Do đó:, kết hợp với \(abc=1\Rightarrow \)\(\frac{1}{a^3+b^3+abc}\leq \frac{1}{ab(a+b+c)}=\frac{c}{a+b+c}\)

Tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{a+b+c}{a+b+c}=1=\frac{1}{abc}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)
SG
1 tháng 3 2017 lúc 13:09

Có: \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2.\left(a+b\right)\ge0\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

TT: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)

\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng vế với vế ta được:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\le\frac{1}{a+b+c}.\frac{c+a+b}{abc}=\frac{1}{abc}\left(đpcm\right)\)

Bình luận (0)
KK
1 tháng 3 2017 lúc 13:12

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a^2-ab+b^2\ge ab\\b^2-bc+c^2\ge bc\\c^2-ca+a^2\ge ca\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\\\left(b+c\right)\left(b^2-bc+c^2\right)\ge bc\left(b+c\right)\\\left(c+a\right)\left(c^2-ca+a^2\right)\ge ca\left(c+a\right)\end{matrix}\right.\)

Áp dụng hẳng đẳng thức tổng 2 lập phương

\(\Rightarrow\left\{\begin{matrix}a^3+b^3\ge ab\left(a+b\right)\\b^3+c^3\ge bc\left(b+c\right)\\c^3+a^3\ge ca\left(c+a\right)\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a^3+b^3+abc\ge ab\left(a+b\right)+abc\\b^3+c^3+abc\ge bc\left(b+c\right)+abc\\c^3+a^3+abc\ge ca\left(c+a\right)+abc\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a^3+b^3+abc\ge ab\left(a+b+c\right)\\b^3+c^3+abc\ge bc\left(a+b+c\right)\\c^3+a^3+abc\ge ca\left(a+b+c\right)\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{abc}{ab\left(a+b+c\right)}\\\dfrac{1}{b^3+c^3+abc}\le\dfrac{1}{bc\left(a+b+c\right)}=\dfrac{abc}{bc\left(a+b+c\right)}\\\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{abc}{ca\left(a+b+c\right)}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)

\(\Rightarrow VT\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}\)

\(\Rightarrow VT\le\dfrac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow VT\le\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)

\(\Rightarrow\) ( đpcm )

Bình luận (0)
NN
1 tháng 3 2017 lúc 17:39

chiu thoi

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NH
Xem chi tiết
QD
Xem chi tiết
QB
Xem chi tiết
NN
Xem chi tiết
IH
Xem chi tiết
DA
Xem chi tiết
QB
Xem chi tiết
LL
Xem chi tiết