Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Viết đa thức \({x^3} - 8\) dưới dạng tích.Rút gọn biểu thức \(\left( {3x - 2y} \right)\left( {9{x^2} + 6xy + 4{y^2}} \right) + 8{y^3}\)
Rút gọn biểu thức sau:
\(\left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right) + \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right)\).
Thay ? bằng biểu thức thích hợp.
a) \({x^3} + 512 = \left( {x + 8} \right)\left( {{x^2} - ? + 64)} \right)\);
b) \(27{x^3} - 8{y^3} = \left( {? - 2y} \right)\left( {? + 6xy + 4{y^2}} \right)\).
Viết các biểu thức sau dưới dạng tổng hay hiệu hai lập phương:
a) \(\left( {x + 4} \right)\left( {{x^2} - 4x + 16} \right)\);
b) \(\left( {4{x^2} + 2xy + {y^2}} \right)\left( {2x - y} \right)\)
Viết các đa thức sau dưới dạng tích:
a) \(27{x^3} + {y^3}\);
b) \({x^3} - 8{y^3}\).
Với hai số \(a,b\) bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức lập phương của một tổng để tính \({a^3} + \left( { - {b^3}} \right)\).
Từ đó rút ra liên hệ giữa \({a^3} - {b^3}\) và \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\).
Với hai số a,b bất kì, thực hiện phép tính
\(\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\)
Từ đó rút ra liên hệ giữa \({a^3} + {b^3}\) và \(\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\).
Tròn nói: Tớ viết được đa thức x6 + y6 dưới dạng tích đấy!
Vuông thắc mắc: Tròn làm thế nào nhỉ?
Giải quyết tình huống mở đầu.