§2. Phương trình đường tròn

H24

 Viết pt đường tròn tâm thuộc đường thẳng 2x+y = 0 và tiếp xúc với (d) x-7y+10=0 tại A(4;2)

LK
18 tháng 3 2023 lúc 21:32

Giả sử (C) tâm I ; BK R 

\(I\in d':2x+y=0\)  \(\Rightarrow I\left(t;-2t\right)\) 

 \(\Rightarrow R^2=IA^2=\left(t-4\right)^2+\left(-2t-2\right)^2\)  \(=5t^2+20\)

Ta có : \(IA=\dfrac{\left|t-7.\left(-2t\right)+10\right|}{\sqrt{1+7^2}}\)  \(\Rightarrow IA^2=\dfrac{\left(15t+10\right)^2}{50}=\dfrac{\left(3t+2\right)^2}{2}\)

Suy ra : \(5t^2+20=\dfrac{\left(3t+2\right)^2}{2}\)  \(\Leftrightarrow10t^2+40=9t^2+12t+4\)

\(\Leftrightarrow t^2-12t+36=0\) \(\Leftrightarrow t=6\)

Suy ra : \(I\left(6;-12\right)\) ; \(R^2=200\)

PT (C) : \(\left(x-6\right)^2+\left(y+12\right)^2=200\)

Bình luận (0)
NL
18 tháng 3 2023 lúc 21:28

Do I thuộc \(2x+y=0\) nên tọa độ có dạng \(I\left(x;-2x\right)\)

Đường thẳng \(d_1\) qua A và vuông góc (d) có pt:

\(7\left(x-4\right)+1\left(y-2\right)=0\Leftrightarrow7x+y-30=0\)

Do (C) tiếp xúc (d) tại A nên I thuộc \(d_1\)

Thay tọa độ I vào pt \(d_1\Rightarrow7x+\left(-2x\right)-30=0\Rightarrow x=6\)

\(\Rightarrow I\left(6;-12\right)\Rightarrow R^2=IA^2=200\)

Phương trình: \(\left(x-6\right)^2+\left(y+12\right)^2=200\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DT
Xem chi tiết
PL
Xem chi tiết
TL
Xem chi tiết
BN
Xem chi tiết
HT
Xem chi tiết
BH
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết