Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
P x - 2 y + 2 z = 0 ; Q : x - 2 y + 3 z - 5 = 0 . Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
A. S : x + 2 2 + y + 4 2 + z + 3 2 = 1
B. S : x - 2 2 + y - 4 2 + z - 3 2 = 6
C. S : x - 2 2 + y - 4 2 + z - 3 2 = 2 7
D. S : x - 2 2 + y + 4 2 + z + 4 2 = 8
Viết phương trình mặt cầu có tâm thuộc đường thẳng d : 2 x + 4 y − z − 7 = 0 4 x + 5 y − z − 14 = 0 và tiếp xúc với hai mặt phẳng P : x + 2 y − 2 z − 2 = 0 và Q : x + 2 y − 2 z + 4 = 0 .
A. x + 1 2 + y − 3 2 + z − 3 2 = 1
B. x − 5 2 + y − 3 2 + z − 3 2 = 18
C. x + 3 2 + y + 1 2 + z + 3 2 = 1
D. x − 3 2 + y − 1 2 + z − 3 2 = 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = - 1 z = t và hai mặt phẳng (P) và (Q) lần lượt có phương trình x+2y+2z+3=0; x+2x+2y+z+7=0. Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng (P) và (Q).
A. x + 3 2 + y + 1 2 + z - 1 2 = 4 9
B. x + 1 2 + y + 1 2 + z + 1 2 = 4 9
C. x - 3 2 + y + 1 2 + z - 1 2 = 4 9
D. x - 1 2 + y + 1 2 + z - 1 2 = 4 9
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = - 1 z = - t và 2 mặt phẳng P , Q lần lượt có phương trình x + 2 y + 2 z + 3 = 0 ; x + 2 y + 2 z + 7 = 0 . Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng P và Q .
A. x + 3 2 + y + 1 2 + z - 3 2 = 4 9
B. x - 3 2 + y + 1 2 + z - 3 2 = 4 9
C. x + 3 2 + y + 1 2 + z + 3 2 = 4 9
D. x - 3 2 + y - 1 2 + z + 3 2 = 4 9
Cho đường thẳng d : x − 1 1 = y − 2 − 2 = z − 2 1 và điểm A (1; 2; 1). Tìm bán kính của mặt cầu có tâm I nằm trên d, đi qua A và tiếp xúc với mặt phẳng (P): x - 2 y + 2 z + 1 = 0
A. R = 2
B. R = 4
C. R = 1
D. R = 3
Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu (S) tâm I (-2;1;1) và tiếp xúc với mặt phẳng (P) : x+2y-2z+5=0
A. S : x - 2 2 + y + 1 2 + z + 1 2 = 0
B. S : x 2 + y 2 + z 2 + 4 x - 2 y - 2 z + 5 = 0
C. S : x 2 + y 2 + z 2 - 4 x + 2 y + 2 z + 5 = 0
D. S : x - 2 2 + y + 1 2 + z + 1 2 = 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y + 1 3 = z - 1 - 1 và mặt phẳng ( P ) : x + 2 y - 2 z = 0 . Phương trình mặt cầu (S) có tâm I ∈ d, tiếp xúc và cách (P) một khoảng bằng 1
A. ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 1
B. ( x + 3 ) 2 + ( y - 2 ) 2 + ( z + 2 ) 2 = 1
C. ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 2
D. ( x - 3 ) 2 + ( y + 2 ) 2 + ( z + 2 ) 2 = 2
Cho điểm A(1;3;-2) và mặt phẳng P : 2 x - y + 2 z - 1 = 0 . Viết phương trình măt cầu (S) có tâm A và tiếp xúc với mặt phẳng (P)
A. x + 1 2 + y + 3 2 + z - 2 2 = 2
B. x - 1 2 + y - 3 2 + z + 2 2 = 4
C. x - 1 2 + y - 3 2 + z + 2 2 = 2
D. x + 1 2 + y + 3 2 + z - 2 2 = 4
Trong không gian Oxyz, cho mặt cầu (S): x - 1 2 + y - 2 2 + z - 1 2 = 6 tiếp xúc với hai mặt phẳng P : x + y + 2 z + 5 = 0 , Q : 2 x - y + z - 5 = 0 lần lượt tại các điểm A, B. Độ dài đoạn AB là
A. 3 2
B. 3
C. 2 6
D. 2 3
Có bao nhiêu mặt phẳng song song với mặt phẳng α : x + y + z = 0 đồng thời tiếp xúc với mặt cầu S : x 2 + y 2 + z 2 - 2 x - 2 y - 2 z = 0 ?
A. 1
B. 0
C. Vô số
D. 2