\(\Delta\left\{{}\begin{matrix}quaA\left(3;-2\right)\\VTCP\overrightarrow{u}=\overrightarrow{AB}=\left(1;-5\right)\Rightarrow VTPT\overrightarrow{n}=\left(5;-1\right)\end{matrix}\right.\)
\(PTTQcủa\Delta:5\left(x-3\right)-1\left(y+2\right)=0\)
\(\Leftrightarrow5x-15-y-2=0\)
\(\Leftrightarrow5x-y-17=0\)
\(d\left(A;B\right)=\dfrac{\left|5x_A-y_A-17\right|}{\sqrt{5^2+\left(-1\right)^2}}=\dfrac{\left|5.3-\left(-2\right)+17\right|}{\sqrt{26}}=\dfrac{17\sqrt{26}}{13}\)