LN

Viết phương trình đường thẳng ∆ đi qua A(1; 1; 1) vuông góc với đường thẳng d: \(\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-1}{2}\) sao cho khoảng cách từ B(2; 0; 1) đến ∆ nhỏ nhất.

HP
9 tháng 3 2022 lúc 14:23

Vectơ chỉ phương của đường thẳng d là \(\overrightarrow{v_d}\)=(1;1;2), \(\overrightarrow{AB}\)=(1;-1;0).

Vectơ chỉ phương của đường thẳng \(\Delta\) là \(\overrightarrow{v_{\Delta}}=\left[\left[\overrightarrow{AB},\overrightarrow{v_d}\right],\overrightarrow{v_d}\right]=-6\left(1;-1;0\right)\).

Phương trình đường thẳng cần tìm là \(\Delta\)\(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=1\end{matrix}\right.\).

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
WK
Xem chi tiết
PB
Xem chi tiết